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The charge and current densities for variational molecular wavefunctions
in finite basis spaces are examined, and the consequences of their failure to
satisfy a continuity equation, and the local charge generation and annihilation,
are discussed. The current can be used to compute observables even though
it might not satisfy the continuity equation. When approximate wave-
functions arc used charge is not conserved locally, but is conserved globally,
and the details of the structure of the charge sources and sinks are discussed in
the case of benzene. A valence bond technique for the calculation of current
density is described and applied to benzene. Valence bond and molecular
orbital methods are compared.

"This paper examines some of the aspects of the current density in molecules.
It has been pointed out previously [1] that non-conservation of charge is a
problem when approximate wavefunctions are used to calculate the current
density, and we explore some of the consequences of this deficiency.

‘The formal definition of current density depends on selecting a lagrangian
density functional which leads to the Maxwell and Schrédinger equations when
varied with respect to the potentials A, ¢ and the complex conjugate of the matter
field 4*.  II we write

‘ff{qﬂ, Q”i A, ‘f)}: Gg)om{Ar QS}+ I dt j dﬂf{’#

(e £ a)-tzm) £ Gurenyv o )

& . being the electromagnetic field lagrangian, then functional differentiation
with respect to ¢* leads to the Schribdinger equation and differentiation with
respect to A, ¢ leads to the Maxwell equations if we make the identifications

plr)=—e Ekl §dry*gd(r.—r), (2 4a)
i(ry= X § drl(ier)2m )($*V o= $V %) — (2 fm ) A *$)8(r — ). (2 6)

&

 These constitute the canonical charge and current densities. They are not
independent because they must satisfy the continuity equation

V. j+ép/ot=0. (3)
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If we require i to have the form of an antisymmetrized product of # one-
electron orthonormal functions the lagrangian density functional should be
written

Pl k=1, ond et k=1 onl A =% LA, B}
+ 25 dif | dry X (D)[A(2/ 1)+ ed(1) ]afy (1)

12me) § dry i (DIp + eA) 201§ dry X OV (), {1)
~é > (2 4meq) J dmy dmy " (1)1 ) (2042

i 2 (e )8(og, o) [ dry dry b FD )b (20 (2)), (9
7
where the interelectronic repulsion has been extracted from the potential 1) and
where o, is the spin part of ¢, Functional differentiation of this expression
produces Hartree- Fock equations for the . and Maxwell equations so long as
we make the identifications

pr)=—e }; e pdy (v, {(5a)

j(r) = 2, (e 2m )iy ()N by () = (r) ¥l * ()
— (e m Ao F ey (ry. (3h)

These quantities satisfy the continuity equation, as may be easily verified.

fn some cases it is of interest to consider the one-clectron decomposition
of the current density.  The canonical form of the current can be constructed
in the same way as hefore, but basing the development on the anpropriate one-
electron lagrangian (which is virtually the same as equation (4 but lacks a sum
pver k). Variation with respect to the petentials leads to the 1denufication of
the canonical one-electron current density

TR TR PR (6)

where the first term is formally identical to the summand in equation (5 D).
The second term, %, is the exchange current of electron &, and s explicit
form is not casilv obtained.  Nevertheless, when summed over all the clectrons
in the system, all the individual exchange currents cancel, and so they are not
needed 1o the calevlation of molecular properties. The total current may
therefore be expressed as the sum of individual onc-clectron effective currents :

j= gik““- {(7)

The arigin of the exchange currents may be traced fo the non-local character of
the potential sampled by an individual particle when it moves in the field of
others [2]. Discussions of exchange contributions to nucleons have been
given by Korolev [3] and Wild [4].

In practice a finite basis set is normally used to expand the many-electron
function ¢ in cquation (1) and in the Schrodinger equation derived frem that
lagrangian, or in the one-electron functions ¢, in equation {4) and 12 the Hartree-
Fock equations associated with them. Neither the Schrodinger equation nor
the Hartree-Fock eguations, however, can in general be satisfied exactly by
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expansions of this type, and in order to determine the best set of expansien
coefficients well-known techniques are used, which normally consist of a type
of averaging over the whole space.  An important consequence of the approxima-
tion procedure is that when the optimum expansion is used in equation {2) or
(5) the canonical charge and current densities fail to satisfy the continuity equa-
tion. For any stationary system, however, the global integral of V. j is zero:
this can be seen by noting that

fdr V. j—2— #*=0 (8)

because ¢ is real. The significance of this result is that the charge density 1s
conserved globally even though it might not be conserved locally. In other
words, charge creation in one region must be matched by charge annihilation
elsewhere.

The canonical current density should be suspected as being only an effective
current density in the sense that, even though it does not satisly the continuity
equation 1n approximate calculations of the wavefunction, it can be used to
calculate the energy of interaction with some external field through the con-
ventional expression

SE=—{drj.5A. (9)

We may demonstrate the validity of this interpretation of j by considering the
energy of a molecule in the presence of two magnetic fields, 1 and I1. The
hamiltonian for the system 1s

=HM+H(D)+ H (I +H(E D+ H(L 11+ H{11, 11), (10)

where the labels denote the order of the fields. The expansion of the wave-
function can be labelled similarly :

D=0+ D+ [T+ |8, Ty L I |11 I+ (11)
Perturbation up to third order with an arbitrary basis set leads to the following
expressions for the energies :

E(I)=2Y <0|H(1)|0>, (12 a)

Qoe

E(I, )= Y {270]H(I, 1)]0> 4

oCC

E(1, 11)=2 Y {<O|H(L, T1)0>+ <LHAD0y + OLH(ID|D,  (120)

Qe

OJH(DY| 1>, (128)

E(L T, 1)=2 % (<1, I|H(T)105 + <0 H(D)| 1, 1> + <I|H(D)| D>
+ 21 1H(T, D05+ 2<0|H(L, 1>}, (12 d)
E(1 11 1) =2 Y {CT1H() 11> = <11, THH([0> + <O|H(DITL, 1)

[slabed

40 H(L DT + <11 H(L, T1)]0%}

= ¥ UL T HD |05 + <O H(T)| T, 11y + (L H(1)H11
+ 3L LI H(T) 05 4 3¢ COIHT, 1D 1>
+ ICT|H(ID)| 11 + 3<T1|H(11) I\+<I§H(H T)[0>
FACTTH(L, 11|05 + 30| H(L, 11)] 113} (12 ¢)
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The same energy terms may also be generated by selecting the appropriate
order of the expansion of the integrated form of equation (9). A difficulty in
the procedure is that when two fields are present the integrated form of equation
(9) depends on the way that the two fields are scaled up from zero to their
full strength. It is shown in Appendix A that the energy term of order
rl1e, E(p, ) is in fact independent of the relation between the scaling up of I
and IT for a flexible class of switching functions, and is given by

E(p, ¢)= —(1q) f dr i(p, ¢—1) . A1), (13)

where j{p, q) is the term of order I?I1¢ in the expansion of the current density.
This confirms that the canonical current density mav be used to compute
observables even though it does not satisfy the continuity equation.

'The conservation of charge is an aspect of the divergence of the current
density. The extent of charge non-conservation is a measure of the incomplete-
ness of the basis because we have seen that the equation of continuity is satisfied
by exact but not, in general, by inexact wavefunctions. The conservation of
charge, however, is a necessary but not sufficient condition for the exact (or
Hartree-Fock) wavefunctions, and the observation that it 1s conserved does
not necessarily entail that the wavefunction is good. It follows that local
conservation of charge cannot be used alone as a reliable criterion i a minimiza-
tion procedure for the local or the global improvement of a wavefunction, but it
might provide a sensitive auxiliary test.

The benzene molecule provides an illuminating example of these problems.
Furthermore, a detailed study of current density distribution in this melecule
should throw light on the controversy about the reality of ring currents.

First we summarize the results of a caleulation of the w-electron current
density on the basis of conventional methods. As a consequence of the
hexagonal symmetry, the 2p m-orbitals have a simple form totally determined
by symmetry, and when gauge-invariant atomic orbitals are used, the first-order
perturbed functions arise from the field-dependent parts of the orbitals because
the first-order bond orders vanish identically,

Using the numerical parameters of reference [1] the general pattern of
currents shown in figure 1 is found. This is analysed in morc detail in figures
2and 3. The overall current in the ring 1s diamagnetic, but locally there may be
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Figure 1. Current through a vertical plane in the benzene molecule at an angle ¢, in units

of 2B 2wme.
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Figure 2. Plot of ¢ as a function of distance from the centre of the benzene ring, where
v

o= [ jdz, at ¢ =0 and cylindrical coordinate r, in units of (¢*B/2m}nm.
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Figure 3. Creation of charge in the semi-plane ¢ =17-5% in units of (¢*B/2m.}/nm®
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paramagnetic contributions. For anmplc figure 2 reveals that there is a
small paramagnetic flow close to the ring centre (mthm a radius of 60 pm)
Figure 1 shows that the current through a half-plane varies significantly as 1t 1s
moved from an angle that bisects a carbon-carbon bond to one that passes
through a carbon atom. This variation of current indicates the charge creation
going on in that sector of the molecule : the slope of the curve in the figure
gives the rate of annihilation of charge in the region. 'The distribution of
charge sources and sinks in a plane perpendicular to the ring is shown in figure 4.
This reflects, of course, the structure of the amplitude of the #-bond.

The remarkably poor local behaviour of the charge and current densities for
thc present system comes from the restricted arbitrary choice of the 2p -

[.A.O. s as basis. There is, in fact, no function satisfying the general require-
ments of a basis function which, when substituted for guarantees local charge
conservation. Other functions might improve conservation, but their use
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cannot be justified on this ground alone, without also invoking some cnergy
minimization procedure.

Figure 4. Pattern of charge creation and current in the benzene ring (obtained by pro-
jecting figure 3, and its analogues, on to the horizontal plane). The magnetic field
hies along =z, perpendicular to the ring.

The final resolution of the problem of knowing whether the current pattern
depicted in figure 1 is purely a consequence of the choice of G.I1LA.O.s as a
basis cannot be obtained until a full @b inifio calculation becomes feasible.
Nevertheless, some clarification might be expected if a commensurate distribu-
tion of currents could be obtained on the basis of an entirely different calculation.
With this in mind we have carried out an entirely exploratory valence-bond
(V.B.) calculation of currents in the benzene molecule.

We decided to examine the V.B. current density on the basis of the ab initio
V.B. calculation of the structure of benzene reported by Norbeck and Gallup
[3]. They took into account the 175 different bending diagrams that can be
arranged inta 22 *4, -functions.  Unfortunately, no calculation of comparable
guality is available for the excited states, and vet these must be available for the
computatien of the paramagnetic current.  In order to obtain an indication of
the V.B. current density, we have taken one of the Norbeck and Gallup ground-
state functions {using as a basis only the five covalent and the 12 ortho-polar
structures (figure 5), and have constructed crude excited states by one of the
standard approximate procedures [6]. (The ground-state energy calculated
on this covalentjortho-polar basis lies only 0:0421 hartree above the full 175-
structure calculation.) On the presence of a homogeneous, constant, magnetic
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Figure 5. Representative Rumer dizgrams considered in the VB calculation ; the numbers
in brackets indicate the number of equivalent diagrams of cach type,

field B, functions of 4, symmetry are mixed into the ground state, in first-
order perturbation theory. As there are no non-polar 4,, functions, the per-
turbed function depends on the presence of the ortho-polar structures of Types
IHI, IV, T'he calculation of the approximate excited state function is outlined
i Appendix B: only the function ®;=0-1667®(111)}+0-06100(1V) makes a
significant contribution to the current, and so we confine attention to it.

Molar susceptibility/107% m® mol—?

Method Reference Xt X P X
VB estimate This work —0-726 41297 —0-429
MO, ab initio (7Y —0-748
MO, ab initio (3) —698
MO, semi-empirical (1) — (709 +(-278 -0-431

1 Corrected for the normalization of the wavefunction to non 2.1D.0,
= electron magnetic susceptibility,

15

10

0.5

0.0 1 1 1 i ;

Fugure 6. Current through a vertical plane in the benzene molecule at angle &, in units of
¢*B2m.. The results of VB and of normalized semi-empirical M.O. ealculation
and their respective diamagnetic parts are shown.
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The V.B. current density and V.B. magnetic susceptibility were calculated
by the method surnmarized in Appendix C. Magnetic susceptibilitics estimated
in this way are reported in the table, together with various types of M.O. results.
The V.B. current density distribution 1s shown in figures 6-9.  In figure 6 the
currents across half-planes extending from the centre of the molecule are
plotted, together with the same quantity calculated on the basis of the semi-
empirical M.O. method mentioned before (but after a correction for the non-
ZDO0 normalization). ‘Their diamagnetic contributions are also shown. The
average V.I3. ring current is 30 per cent greater than the M.O. current, and this
shows itself in the paramagnetic part of the magnetic susceptibility. The
diagrams show that there is a large charge non-conservation in the V.B. descrip-
tion, and this must be an indication of the poor quality of at least the excited
state functions.  In figures 7-9 the radial distribution of the current (integrated
along the z-axis) is shown for three different planes. For comparison, the
equivalent semi-empirical M.O. result is shown, as well as the two diamagnetic
parts.

Figure 7. Plot of o as a function of distance from the centre of the benzene ring at =0~
and cylindrical coordinate z, in units of (e2B/2m,)/nm.

Fipure 8. As in figure 7, but for ¢ =15 .

The V.B. work points out the feasibility of ab fnitio calculations of magnetic
properties.  The dominating problem is the calculation of excited states of the
appropriate symmetry, and if the V.B. technique is to be developed, that must
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be the centre of attention. The immediate conclusion as far the aim of the
present calculation is concerned, is, however, somewhat ambiguous. A sanguine
view would be that since the V.B. calculation gives a ring current not less than
fand in fact, 30 per cent more than) the ring current estimated in the framework
of the semi-empirical M.O. theory with basis set, its existence is supported and
18 not simnply a manifestation of some approximation.

We thank the Instituto Nacional de Investigagao Cientifica, Lisbon for fin-
ancial support of JANF.G.
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Tigure 9. As in figure 7, but for ¢=30°,

APPENDIX A

In this Appendix we prove the following theorem.

Theorem. The interaction energy E(p, g) of order 17117 is independent of
the manner of scaling the two fields from zero to their final value so long as the
wavefunction is variationally determined.

We consider the case of two magnetic fields I, IT which are switched from
zero to their full strengths as AA(1), pA(1T) with A, p: 01 and assume these
scaling functions to be such that A and p are regular in all their domains. A
may be expressed as a power series in p:

A= T ogt (A1)

with

Tl (A 2)
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The interaction energy is given by the conventional expression
SE= ~{drj.sA (A 3)
The contribution of order 17117 is determined by
SE(p, q)=—fdr{i(p—1,9). A1) +j(p, ¢—1) . SA(11}] (A4)
and so
E(p, qy=—Tdr{§dArv"pii(p-1,4) . A1)
+f dp Apttj(p, g 1) A(TD
{=sfdrj(p-1,4) A(l)
~fdrjlp.g—1). A(IL)},  (AS)
I (1p) fdri(p—1, ¢} A)=(ig) f d=i(p, g— 1) . A(IT) (A 6)

and using equation (A 2), the expression equation (A 5) for E(p, ¢} becomes
independent of the set of ¢, used and the energy may be calculated for any
convenient choice. In particular we may take all ¢, except ¢, =1 to be zero.

For n=0 we obtain

1
Tps+g

:ZS:C

E(p,q)=—(g) [ d=i(p, q—1) . A(1I) (A 7a)
and in the limit of very large #,
E(p, )= —(Lip)fdrj(p—1,9) - A(), (A 7b)

results used in the text.
Consider the lagrangian

L(x, y)=Z{b, ¥ ¢, A(L), A(LL); (A 8)
with A(1}=axa(1) and A(IT)=1a(II} and let it be decomposed into a power

series in x and y:

ZL(x, .y)= Z L(ps qu: ,}") (A )
b, g
iith
F(p, qlax, By) = aB1L(p, 413, ¥)-
For the homogeneous function #{p, ¢) we can write
Z(p, qlx, y)=(x/pY/2x)L(P, g|% ¥) (A 10a)
= (¥/g}Eey)L(p, qlx, ¥)- (A 108)

Z(p, g, x, ¥) depends on x, y explicitly through A(I) and A(11}, and implicitly
through «, * :
x(2j2x) 2(p, g, %, ¥)=[ dr xa(1) . (BL(p, qlh, %, & A(L), A(IL)/5A(1)}
tafdr (8L[Bp) o)+ [ dr (L[8¢*)(0f*/ox)
=fdr A(L).i(p-1 9), (A 11)
because y/éx and @f*/2x are in the subspace where ¢ is varied, and the co-
efficients of the expansion in the basis [y} are found by making
Jdr (82154%)p,* =0, (A 12)
etc. The combination of equations {A 11) with (A 104) and (A 106} completes
the proof of equation (A 6} and hence of the theorem,
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AppeExpIX B
I this Appendix we indicate the method used to construct the 14, excited
V.B. states of benzene, using as a basis the covalent and ortho-polar structures.
The Rekulé (I, in figure 5) and Dewar (I1) covalent structures give no
contribution to .y, states.  From the ortho-polar structures (IIL, IV} we can
form two combinations of A, svmmetry : these we denote ®(111) and B(IV),
the ceefficients being =1 for each individual bonding diagram.  Using the
rules set out by Craig [6] for calculating matrix elements between polar structures,
we arrive at the following secular equation :

[ 240+ B2-40 12x—336

12¢-336 24x—131-52

The corresponding eigenbases are

Oy =0-1667 11T = 0-:0610 ®(IV), E, =0 +207 k] mol7,

Dy =0-1667 i ITT - 02277 O(IV), E,=0+ 849 k] mol-".
In terms of the same parameter O, the energy of the ground state on the same
covalent ortho-polar basis 1s E,= 0~ 350 k] mol-*. The energy gap to the first
excited state is therefore ~ 737 k] mol-1.
This calculation 1s based on 2 zero differential overlap {Z.1).0.) approxima-
uon,  All the caleulanons of current density are evaluated to second order in the
overlap integral between two neighbouring p.-orbitals. The coefficients in

P, were corrected accordingly, keeping the constraint that their ratio should be
the same as above,

AppENDIX C

In this Appendix we dutline the method of calculating the current density
i a VOB frameword

When the wavefunction in the canonical expression for the current density
15 written in the form of 2 perturbation expansion

Yo b0+,
Cm= —{ehB2m (B~ E\)} L,
L=Y kAr .V,

current density may be written as a sum of the para-
+j? with

Firi= 1B m N Eg— E)) L1y Dyy(r),
Piry= — 1B 2m tk Arp(r),

=3 S f drdo (0,57,0,~ O,T.0)8(r —r,),

= S g d?ﬁfg@O@OB( r— f-l}.

nd spin coordinates.
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The paramagnetic and diamagnetic components of the magnetic susceptibility
can be obtained at once from
X' =~ ANpoe™ B 2m HEy— Fy)} [ Lo |,
x4= —{Nypye*/4m,} j drdo|k Ar|2Q D,
The calculation of D {r) 1s difficult because @, and ®, are linear combina-
tions of determinantal functions, but we have carried out the calculation up to

second order in the overlap integral §,, betwecen pairs of neighbouring p,-
orbitals, and considering d,, =39,V P.p — o1,V P.) to be of the same order as

S,y The expansion of Dg,(r) involves the following terms between sym-
metrical functions with coefficients 1 of 4, (subscript 1) and 4, (subscript 2)
symmetry :
DN, Ny)y= AN}, NOAS(N,, NIS(N,, Ny
with S(N;, N;) the overlap integral, A the mean of the d,; functions
A= 'é]i"{dub + dbc + dm‘. + d(i’c + d«j + dfrr)s

and A(N,, N,) the set of numbers

Ny I 11 111 v
111, 30 36 2885, 2168,
T o
s IV, 24 36 216S8,, 288S,,
a, b, ... f denote the six 2 p»_-orbitals.

These expressions were used to calculate Dyy(r) and then j2(r). Integration
then leads directly to Ly, and y”. For the diamagnetic contributions we used
the bond-order matrix given by Norbeck and Gallup [5] for their covalent
singly-polar calculation. 'This part is far less dependent on the quality of the
wavefunctions.
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